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We study the behavior of a heuristic for solving random satisfiability problems by stochastic local search
near the satisfiability threshold. The heuristic for average satisfiability �ASAT�, is similar to the Focused
Metropolis Search heuristic, and shares the property of being focused, i.e., only variables in unsatisfied
clauses are updated in each step. It is significantly simpler than the benchmark WALKSAT heuristic. We
show that ASAT solves instances as large as N=106 in linear time, on average, up to a ratio of 4.21 clauses
per variable in random three-satisfiability. For K higher than 3, ASAT appears to solve instances of
K-satisfiability up to the Montanari-Ricci-Tersenghi-Parisi full replica symmetry breaking �FSRB� threshold
denoted �s�K� in linear time.
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I. INTRODUCTION

Satisfiability �SAT� problems appear critically in many
disciplines. Finding fast and reliable numerical methods for
solving them is crucial in industrial applications, such as
scheduling, or in verification.

The random K-satisfiability model �KSAT�, where each
condition or clause depends on the same number of variables
K, and an instance is picked randomly with a given number
of clauses per variable, has been of interest both to theoret-
ical computer science and to statistical physics �1,2�. For K
�3KSAT belongs to the NP complete class of problems.
While a deterministic algorithm will always find a solution if
there is one, it presumably takes a long time to solve a KSAT
instance in the worst case �3�. However, the typical behavior
can be different. Indeed, since the beginning of the 1990s it
has been known that the average running time of a determin-
istic algorithm depends on �=M /N, the number of clauses
�M� per variable �N� �4�. As � varies, a transition between a
satisfiable and an unsatisfiable phase is observed at a thresh-
old value �c, and the transition becomes sharper as N in-
creases �5�. Deterministic algorithms have longest average
run times close to �cr �4–6�.

Stochastic search heuristics are not guaranteed to find a
solution, if there is one, but may on the other hand greatly
outperform a deterministic algorithm on a typical �solvable�
instance. As � increases for given K and N, the typical run
time of a given heuristic increases, eventually diverging, at
the latest at �c. The most interesting behavior, if it can be
established, is if for some heuristic both the average run time
grows only linearly in N for sufficiently small �, and also the
distribution of run times per variable gets narrower as N
increases. If so, the run time per variable is a self-averaging
quantity. We denote here the greatest such � for some
heuristic �lin the linear-time transition for that heuristic.

A benchmark stochastic search is Papadimitriou’s
RANDOMWALKSAT �7�: in every step an unsatisfied clause
is picked randomly, and then one random variable in that

clause is flipped. For that algorithm, rate equations and direct
simulations indicate that �lin on 3SAT is approximately 2.7
�8,9�. Furthermore, for simple heuristics, such as straight-
forward guessing without backtracking, rate equations and
direct simulations also show a nonzero �lin, albeit smaller
�10�.

A limitation of RANDOMWALKSAT is that it does not
distinguish which variable in a clause to flip, or if flipping
one increases or decreases the number of unsatisfied clauses.
The WALKSAT �11� algorithm mixes RANDOMWALKSAT
moves with greedy steps, by default in equal proportion.
WALKSAT is known to be quite powerful on SAT problems,
but it was only shown quite recently to have a �lin of 4.15
on 3SAT �12�. In contrast to RANDOMWALKSAT, rate
equations have not been set up for WALKSAT: the interleaving
of random and greedy moves, and the additional “freebie”
move in the Selman-Kautz-Cohen heuristic, has made that
complicated. Alava, Orponen, and Seitz showed that �lin for
WALKSAT could be pushed to or beyond 4.20 by optimizing
over the proportion of random and greedy moves �13�. These
authors further showed that two other algorithms Focused
Metropolis Search �FMS� and Focused Record-to-Record
Travel can be optimized to also have an apparent �lin around
4.20. FMS in particular is quite simple: a variable in an un-
satisfied clause is flipped if that decreases the number of
unsatisfied clauses, and otherwise flipped or not flipped by a
probability exponential in that number. FMS does not have
the freebie move of WALKSAT, but is still of comparable
efficiency.

In this paper we will introduce and study a heuristic av-
erage SAT �ASAT�, which is arguably yet simpler than FMS. In
ASAT a variable is flipped if this decreases the number of
unsatisfied clauses, as in FMS, and then flipped with a con-
stant probability if the number of unsatisfied clauses in-
creases. ASAT is therefore sensitive to the widths of local
minima, but not directly to the heights of the walls around
local minima.

The relevance of these studies lies along the following
lines. First, powerful search heuristics have an practical in-
terest, and when they are simple one might hope for an ana-
lytical treatment along the lines of �8,9�. Second, from the
theoretical side, it is of interest if �lin for ASAT and other
heuristics lies beyond 4.20 on random 3SAT, since that lies
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beyond two natural candidates for upper bounds on �lin,
known, respectively, as �d �which is around 3.92 for random
3SAT� and �s �around 4.15�. Such a high value is also quite
close to the SAT-UNSAT transition �c at 4.27.

The theoretical background of �d and �s can be briefly
described as follows. Within the cavity method, it has
been shown that for low enough � replica symmetry is un-
broken, and the set of solutions is connected. In the interval
��d ,�cr� replica symmetry is broken, and the set breaks up
into “clusters” �14,15�, recently rigorously confirmed for
large enough K �16,17�. The cavity method describes a one-
step broken replica symmetry solution. In the interval
��s ,�c� it is unstable against a two-step broken replica sym-
metry perturbation �18�. The set of solutions is then presum-
ably a hierarchical structure of clusters, as described by full
replica symmetry breaking. For random 3SAT, �s lies
approximatively at 4.15.

A satisfiability problem is equivalent to the problem of
finding a zero-energy ground state in a statistical mechanics
model, where the “energy” is the number of unsatisfied
clauses. In the UNSAT regime, where an instance is typically
unsatisfiable, the ground state energy is typically larger than
zero. In the SAT regime, clusters of solutions are local
minima, which are also global minima. If these are accom-
panied by a much larger number of clusters with nonzero
energy, such clusters could act as traps to local search heu-
ristics. The number of clusters of local minima at given en-
ergy was computed by the cavity method for random 3SAT
in �14,15�, and for higher K in �19�, and does increase with
energy.

The results of this paper and of �13� indicate that �lin
for optimized algorithms is substantially larger than �s for
3SAT. We show that the run time of ASAT is self-averaging
at �=4.21 on 3SAT up to instances of one million variables,
while it is not self-averaging at �=4.25. We present
here data that at �s�K�, as computed recently in �19�, run
times of ASAT seem self-averaging up to K=7. The time
course of a solution is another quantity of interest. Below
�lin, ASAT solves an instance in linear time, similarly to
RANDOMWALKSAT below its �lin. Above �lin, ASAT typically
solves an instance by a slow process, “sinking” through
several plateaus. We show results from one such run, and
we note that it appears to be different from the “solution
by fluctuations” proposed for RANDOMWALKSAT above its
�lin �8�. To optimize ASAT we introduce a reheating
procedure.

II. THE ASAT HEURISTIC

ASAT is a focused heuristic, like RANDOMWALKSAT, WALK-

SAT, and FMS, meaning it focuses on the unsatisfied clauses at
any given time, and makes trial moves only to neighboring
states by flipping a variable that appears in at least one un-
satisfied clause. Variables that only appear in satisfied
clauses are never flipped. For any trial move, ASAT com-
putes only if that move will increase or decrease the energy
�number of unsatisfied clauses�. A move that increases the
energy will be accepted with fixed probability, independent
of how much the energy is changed, while a move that
decreases the energy will be accepted always.

The ASAT algorithm is therefore characterized by the
single parameter p, which plays an analogous role to the
proportion of random and greedy moves in WALKSAT �a pa-
rameter also called p�, and the noise parameter � of FMS.
Optimization of p in ASAT is discussed below in Sec. III.
Figure 1 shows a rank ordered plot of the run times for
different system sizes N=104 ,105 ,106 at �=4.21. This and
analogous data for several lower values of � �data not
shown� indicate that the run time of ASAT is self-averaging at
least this far.

On the other hand, at �=4.25, the conjectured end point
of the Survey Induced Decimation �SID� algorithm �14,15�,
ASAT is not self-averaging �data not shown�.

The solution process can be characterized by the fraction
of unsatisfied clauses as a function of the number of flips.
Following �8–10� it is convenient to introduce a “time” as
�flips�/N. Figure 2 shows the time course of a solution pro-
cess at �=4.22. One can clearly see three regimes, one fast,
one intermediate, and one quite slow. The fast regime, up to
time about ten thousand, is presumably analogous to the
Poissonian regime in RANDOMWALKSAT as studied by �8,9�.
The intermediate and slow regimes have, as far as we know,
not been shown on these problems previously. We note that
dynamics appears self-averaging in both the fast and the in-
termediate regimes. The slow regime proceeds by plateaus
�long waiting periods�. While this qualitative behavior re-
peats itself from run to run, the position and lengths of the
plateaus do not.

Finally, we have investigated ASAT for K larger than 3,
albeit in less detail. While computational determination of
the threshold gets harder at higher values of K, one may look
for evidence that some given � is comfortably below �lin. In
Fig. 3 we have looked at �s�K�, whose values were recently

FIG. 1. �Color online� Ranked logarithmic run times per vari-
able of ASAT, p=0.21, at �=4.21 and values of N from 104 to 106

on 3SAT. Note pivoting of the distributions, as in �12�. Note that all
runs were made with a cutoff of 5�106N flips. Out of 100, all
instances at N equal to 105 and 106 are solved within this time; most
instances at N=106 taking close to 1010 flips. For the smallest size,
N=104, the spread is larger, and about 10% of the instances are not
solved in 5�1010 flips, although the median is but a little more than
108 flips.

BRIEF REPORTS PHYSICAL REVIEW E 74, 037702 �2006�

037702-2



given as 4.15, 9.08, 17.8, 33.6, and 62.5 for K from 3 to 7,
respectively �19�. The results are not entirely conclusive, but
tend to support that �lin is greater than �s.

III. PARAMETER OPTIMIZATION

In this section we describe a method to optimize the value
of the noise parameter p, a method we call simulated heating
of ASAT �ASAT-HEAT�.

The idea is that there is a tradeoff to be made between an
algorithm getting out of local minima and efficiently explor-
ing the bottom of a local minimum. Hence, the premise is
that solutions are found at the bottom of some local minima,
which are not otherwise distinguished. Recently, we became
aware that a related idea, “optimization at the ergodic edge,”
has recently been considered by Boettcher and Frank �20�,
and also used to optimize the Record-to-Record-Travel algo-
rithm, by Jia, Moore, and Selman �21�.

In the context of ASAT we look for the value p such that
the algorithm does not get stuck, while still exploring the
bottom of mimina where it finds itself. That is done by an
interleaved process, where the algorithm alternatively runs
with some nonzero p �to explore phase space, and get out of
minima�, and alternatively freezes at zero p �to find the bot-
tom of the mininum it is moving in�. The value of pcr found
by ASAT-HEAT decreases with increasing K; the values for K
from 3 to 7 are given in the caption to Fig. 3

IV. DISCUSSION

We have in this work presented a heuristic for satisfiabil-
ity problems called ASAT. We have shown that ASAT has typi-
cal run time linear in N up to �=4.21 on 3SAT, up to the
largest instances that can conveniently be studied �N�106�.
This means, that to the best of our estimate, the linearity
threshold for ASAT, �lin, is larger than that for the clustering
transition ��d=3.92� and also the FRSB threshold ��s

=4.15�. We have studied ASAT at larger K, and showed that
�lin is likely to be larger than �s there also. A parameter
optimization technique ASAT-HEAT was introduced. This al-
lows for a determination of an optimal parameter value of
the algorithm, and can be considered an alternative to the
extensive simulations at many values of N, �, and one
algorithm parameter used in �13�.

While physical intuition suggests that local heuristics will
have difficulties where many metastable states appear this
does not seem to be the case. RANDOMWALKSAT and very
simple heuristics have difficulties far below �d, while ASAT

and other heuristics seem to work linearly beyond �s. Let us
therefore end by stating the differences between stochastic
local search heuristics to find satisfying assignments in ran-
dom KSAT and a physical process of random walk in a cor-
responding energy landscape. First, RANDOMWALKSAT,
WALKSAT, FMS, and ASAT are focused: these algorithms cor-
respond to nonequilibrium dynamics without detailed bal-
ance �9�. Conservation of cluster structure under nonequilib-
rium perturbations is a delicate point in some spin glass
models �22,23�. Second, while FMS is similar to a random
walk in the energy landscape, in the sense that the dynamics
directly depends on the local energy, WALKSAT and ASAT are
not. In WALKSAT with the Selman-Kautz-Cohen heuristic, de-
cisions are based on a change in BREAKCLAUSE which is not

FIG. 3. Median and quartile run times per variable at �
=�s�K� �values taken from �19��. The figure indicates that
ASAT solves these instances with about equal computational cost per
variable, for all K. The parameter p was found by the procedure
ASAT-HEAT �see main text� on each value of K separately. The values
were 0.21, 0.118, 0.068, 0.045, and 0.032 for K from 3 to 7, respec-
tively.

FIG. 2. �Color online� Time course of solution of one instance
by ASAT at �=4.22 and N=106. Note that ASAT solves this instance,
but only after 1.3�105 time steps, i.e., 1.3�1011 flips. The
main plot, in logarithmic coordinates, shows that the solution
proceeds in three stages. First, there is decay on a time scale up to
about 103. This process slows down, and is overtaken by another
process which last up to time about 2�104. Finally, there is a
very slow decrease to the solution. Top inset shows a blowup of
the second stage in linear coordinates. Bottom inset shows the
final decrease, which proceeds via plateaus where the energy is
approximately constant. In this run three plateaus can be discerned,
with approximately 200, 50, and 15 unsatisfied variables, respec-
tively.

BRIEF REPORTS PHYSICAL REVIEW E 74, 037702 �2006�

037702-3



the same as an energy change, while in ASAT decisions are
based on whether the energy increases or decreases at all. We
do not know if this is an essential difference. Therefore, fi-
nally, while numerical simulations cannot rule out that, e.g.,
ASAT will run into trouble beyond �s on instances larger than
the ones we have studied, we are not sure if it necessarily has
to. Theoretical predictions on for what N one would expect
to see nonlinear behavior at what � would be most helpful to
guide numerical experiments on this issue.
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